Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket.
نویسندگان
چکیده
The vertebrate nuclear pore complex (NPC) is a macromolecular assembly of protein subcomplexes forming a structure of eightfold radial symmetry. The NPC core consists of globular subunits sandwiched between two coaxial ring-like structures of which the ring facing the nuclear interior is capped by a fibrous structure called the nuclear basket. By postembedding immunoelectron microscopy, we have mapped the positions of several human NPC proteins relative to the NPC core and its associated basket, including Nup93, Nup96, Nup98, Nup107, Nup153, Nup205, and the coiled coil-dominated 267-kDa protein Tpr. To further assess their contributions to NPC and basket architecture, the genes encoding Nup93, Nup96, Nup107, and Nup205 were posttranscriptionally silenced by RNA interference (RNAi) in HeLa cells, complementing recent RNAi experiments on Nup153 and Tpr. We show that Nup96 and Nup107 are core elements of the NPC proper that are essential for NPC assembly and docking of Nup153 and Tpr to the NPC. Nup93 and Nup205 are other NPC core elements that are important for long-term maintenance of NPCs but initially dispensable for the anchoring of Nup153 and Tpr. Immunogold-labeling for Nup98 also results in preferential labeling of NPC core regions, whereas Nup153 is shown to bind via its amino-terminal domain to the nuclear coaxial ring linking the NPC core structures and Tpr. The position of Tpr in turn is shown to coincide with that of the nuclear basket, with different Tpr protein domains corresponding to distinct basket segments. We propose a model in which Tpr constitutes the central architectural element that forms the scaffold of the nuclear basket.
منابع مشابه
Direct interaction with nup153 mediates binding of Tpr to the periphery of the nuclear pore complex.
Tpr is a 267-kDa protein forming coiled coil-dominated homodimers that locate at the nucleoplasmic side of the nuclear pore complex (NPC). The proteins that tether Tpr to this location are unknown. Moreover, the question whether Tpr itself might act as a scaffold onto which other NPC components need to be assembled has not been answered to date. To assess Tpr's role as an architectural element ...
متن کاملTpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export
Tpr is a coiled-coil protein found near the nucleoplasmic side of the pore complex. Since neither the precise localization of Tpr nor its functions are well defined, we generated antibodies to three regions of Tpr to clarify these issues. Using light and EM immunolocalization, we determined that mammalian Tpr is concentrated within the nuclear basket of the pore complex in a distribution simila...
متن کاملThe human TREX-2 complex is stably associated with the nuclear pore basket.
In eukaryotes, mRNA export involves many evolutionarily conserved factors that carry the nascent transcript to the nuclear pore complex (NPC). The THO/TREX complex couples transcription to mRNA export and recruits the mRNA export receptor NXF1 for the transport of messenger ribonucleoprotein particles (mRNP) to the NPC. The transcription and export complex 2 (TREX-2) was suggested to interact w...
متن کاملCaspases target only two architectural components within the core structure of the nuclear pore complex.
Caspases were recently implicated in the functional impairment of the nuclear pore complex during apoptosis, affecting its dual activity as nucleocytoplasmic transport channel and permeability barrier. Concurrently, electron microscopic data indicated that nuclear pore morphology is not overtly altered in apoptotic cells, raising the question of how caspases may deactivate nuclear pore function...
متن کاملThe nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly
We have established that two homologous nucleoporins, Nup170p and Nup157p, play an essential role in the formation of nuclear pore complexes (NPCs) in Saccharomyces cerevisiae. By regulating their synthesis, we showed that the loss of these nucleoporins triggers a decrease in NPCs caused by a halt in new NPC assembly. Preexisting NPCs are ultimately lost by dilution as cells grow, causing the i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 15 9 شماره
صفحات -
تاریخ انتشار 2004